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Abstract: Objective: To assess if incorporation of DRS sensing into real-time robotic surgery 
systems has merit. DRS as a technology is relatively simple, cost-effective and provides a 
non-contact approach to tissue differentiation. Methods: Supervised machine learning 
analysis of diffuse reflectance spectra was performed to classify human joint tissue that was 
collected from surgical procedures. Results: We have used supervised machine learning in the 
classification of a DRS human joint tissue data set and achieved classification accuracy in 
excess of 99%. Sensitivity for the various classes were; cartilage 99.7%, subchondral 99.2%, 
meniscus 100% and cancellous 100%. Full wavelength range is required for maximum 
classification accuracy. The wavelength resolution must be larger than 8nm. A SNR better 
than 10:1 was required to achieve a classification accuracy greater than 50%. The 800-900nm 
wavelength range gave the greatest accuracy amongst those investigated Conclusion: DRS is 
a viable method for differentiating human joint tissue and has the potential to be incorporated 
into robotic orthopaedic surgery. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Laser surgery combined with robotic control in orthopaedics is still a developing field which 
provides the opportunity for more precise surgery, new surgical techniques, and the ability to 
work remotely with a high level of sterility [1–3]. However, the process of laser surgery does 
not provide tactile feedback, which is useful for surgeons to determine the type of tissue being 
ablated and for controlling the ablation depth [4]. Hence there is a risk of iatrogenic damage 
[5–7]. 

When light is applied to a tissue type, various wavelengths will be both absorbed and 
scattered depending on its optical properties [8]. This phenomenon can be measured through a 
process known as Diffuse Reflectance Spectroscopy (DRS). This study investigates the DRS 
of human joint tissue to determine the plausibility of automatically distinguishing tissue 
typing based on the generated spectral data. This was performed using an optical fibre 
coupled spectrometer with a minimum wavelength resolution of 2.0 nm and Si CCD. It was 
illuminated using a standard halogen lamp. The resulting data set comprised of spectra from 
cartilage, subchondral bone, meniscus, and cancellous bone specimens. We also investigated 
the effects of spectrometer resolution and signal-to-noise ratio (SNR) on classification 
accuracy. 

The objective of this study was to prove with strong statistical significance that the 
incorporation of DRS sensing into real-time robotic surgery systems has merit. Current 
orthopaedics surgical technology available in clinical practice relies on specialists (surgeons) 

                                                                      Vol. 10, No. 8 | 1 Aug 2019 | BIOMEDICAL OPTICS EXPRESS 3889 

#364362 https://doi.org/10.1364/BOE.10.003889 
Journal © 2019 Received 8 Apr 2019; revised 23 Jun 2019; accepted 23 Jun 2019; published 11 Jul 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.10.003889&amp;domain=pdf&amp;date_stamp=2019-07-12


to visually differentiate tissue. DRS as a technology is relatively simple, cost-effective and 
provides a non-contact approach to tissue differentiation. Its usage as a diagnostic tool has 
already been proven by identifying various tissue types including bladder [9] where elastic-
scatter spectra were obtained using a fibreoptic probe incorporated in a urological cystoscope, 
brain tissue where near-infrared (NIR) optical-property characterization by measurement of 
spatially resolved diffuse reflectance [10,11], breast [12,13] tissue where elastic scattering 
spectroscopy mediated by fibreoptic probes were utilised, cervix [14] tissue which utilised 
reflectance spectroscopy, colon [15,16] tissue which utilised diffuse reflectance spectroscopy, 
oesophagus [17,18] tissue utilising fluorescence, reflectance, and light-scattering 
spectroscopy, ovarian [19] tissue utilising reflectance spectroscopy, pancreas [20,21] tissue 
utilising optical spectroscopy, and skin [22,23] utilising near-infrared spectroscopy. 

2. Method 

2.1 Hardware 

Human joint tissue in the form of bone and soft tissue specimens were collected from routine 
total knee replacement surgeries over a 3-month period after clinical ethics and patient 
consent had been received. 

Optical spectra were generated through DRS from a set of 3043 human joint tissue 
samples which included cartilage, subchondral bone, cancellous bone and meniscus. These 
spectra had a wavelength range of 200-1000nm and were collected under consistent 
conditions. The spectrometer (Fig. 1) used for collection was the portable Ocean optics USB-
650 tide spectrometer [24] which detected the wavelength dispersed light with a linear silicon 
CCD array detector and was operated with a wavelength resolution of 2nm. The light source 
used was a 150W fibre-coupled Halogen lamp, connected to a light ring to standardise 
illumination spread across the tissue sample. In total, spectra from 1579 cartilage, 1269 
subchondral bone, 156 cancellous bone and 39 meniscus samples were collected. 

2.2 Sample collection and preparation 

Human joint tissue was collected by two orthopaedic surgeons during the course of total knee 
replacement operations. The tissue was transported to the sensing laboratory, sensed and 
stored in a freezer within 72 hours of collection. 

2.3 Software 

Figure 2 illustrates the supervised machine learning work flow used for tissue identification. 
All computations were performed using the WEKA machine learning tool kit [25] based on 
the normalised spectra. The data set consisted of 3043 spectra whose measurements spanned 
across 2048 wavelength channels. Each of these wavelength channel were regarded as an 
attribute towards the identification of the associated tissue class. There were four tissue 
classes consisting of cartilage, subchondral bone, cancellous bone, and meniscus. 

As part of a supervised learning procedure, the first step involved the identification of the 
samples to create a ground truth for each sample. This identification was performed by 
clinical orthopaedic surgeons based on the shape, colour, presentation and, most prominently, 
the location in which they were removed from the patient. 

The second and third steps involved the normalisation and dimensionality reduction of the 
spectra respectively. Normalisation began through division by the light source spectrum 
followed by the application of a standard normal variate (SNV) [26] transformation to centre 
and scale them. The average spectra and standard deviation for each tissue class was then 
calculated based on this normalised form. This enabled both the inter-class variation and the 
intra-class variation to be measured. Dimensionality reduction involved reducing the number 
of attributes or wavelengths associated with each spectral sample. This was achieved through 
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Multiclass Fisher’s Linear Discriminant Analysis (Multiclass FLDA) [27] and resulted in 
each sample having only 3 identifying attributes. 

The final step was the comparison of present classifiers to determine which best correlated 
with the ground truth. This was achieved through Linear Discriminant Analysis (LDA) [28] 
with 10-fold cross-validation being used to determine the resulting classifier accuracy. This 
involved splitting the data into 10 sets with 9 sets being used for training and 1 set used for 
testing. This was repeated 10 times with a mean accuracy recorded across the iterations. 

The quality and quantity of data required for efficient classification was determined by 
investigating how the classification accuracy changed depending on the spectral range, 
resolution and SNR. Changes resulting from the range were determined by running the 
classifier on 100nm segments of the spectra. This provided a comparative accuracy measure 
for each wavelength range that can be useful in identifying regions better suited to tissue 
identification. Changes resulting from the resolution and SNR were determined using a 
combination of linear-interpolation and noise that was added by artificially degrading the 
data. The optimal level of noise required was determined by incorporating it within 10 
samples. The classifier was then run on this reduced set with the degree at which the results 
differed from their originals being used as an indicator of how much noise could be tolerated. 

 

Fig. 1. Spectrometer and optics setup. 
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Fig. 3. Average DRS spectra for each tissue type after SNV normalization 
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normalisation pre-processing step to adjust for these variations. Common approaches for 
normalising spectra include constant shifts, smoothing, scaling, SNV, baseline correction and 
continuum removal [31–36]. 

It was recognized that a class imbalance was present within this work based on the 
significant variance existing between class samples sizes. This was investigated to determine 
if it led to the subsequent positive results. Of all the tissue classes used, Meniscus was the 
smallest with a data set of 39. The same number of data samples were taken from the 
remaining classes and the classifier was ran on the new data set. Regardless of this reduction, 
it still achieved a classification accuracy of above 99%. This demonstrates that suitable 
discrimination must exist between the classes, independent of any influence from their sample 
sizing. 

Cross-validation is a technique used to evaluate predictive models by partitioning the 
original sample into a training set to train the model, and a test set to evaluate it [37]. The 10-
fold cross-validation is a common form of this were the data set is broken into ten different 
sets where nine of these are used to compose the training set and the remaining one is used for 
the test set. The classification accuracy was above 99% using this technique. This accuracy is 
similar to that achieved by Stelzle et al. [38] where Principle Component Analysis (PCA) and 
Quadratic Discriminant Analysis (QDA) were used to achieve 94.8% accuracy on 12,150 pig 
tissue measurements. However, our method learned a comparable level of accuracy from 
approximately 4 times fewer measurements. 

Figure 5 demonstrates that accuracy does not degrade below 90% until resolution drops 
below approximately 8nm. A colour camera has a spectral resolution of around 70-100nm 
[39]. This suggests we could achieve around 80% accuracy with a normal colour camera. At a 
10:1 signal to noise ratio, the classifier was only able to correctly classify approximately 50% 
of the time, hence the classifier requires a signal to noise ratio better than 10:1. 

5. Conclusion 

We have used supervised machine learning in the classification of a DRS human joint tissue 
data set and achieved classification accuracy in excess of 99%. We employed a halogen light 
source and a spectrometer for DRS of human joint tissue collected from surgical procedures. 
We collected a data set comprising diffuse reflectance spectra of 4 types of human joint tissue 
in the wavelength range 200nm-1030nm. They included 1579 cartilage, 1269 subchondral 
bone, 156 cancellous bone and 39 meniscus samples. Tests on the data set revealed that full 
wavelength range is required for maximum classification accuracy, the wavelength resolution 
must be larger than 8nm, a SNR better than 10:1 was required to achieve a classification 
accuracy greater than 50% and the 800-900nm wavelength range gave the greatest accuracy 
amongst those investigated 
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